
m01 – Sorting m01fsc

nag search vector (m01fsc)

1. Purpose

nag search vector (m01fsc) searches a vector of arbitrary type data objects for the first or last
match to a given value.

2. Specification

#include <nag.h>
#include <nag_stddef.h>
#include <nagm01.h>

Boolean nag_search_vector(Pointer key, Pointer vec, size_t n,
ptrdiff_t stride, Integer (*compare)(const Pointer, const Pointer),
Nag_SortOrder order, Nag_SearchMatch final, Pointer *match, NagError *fail)

3. Description

nag search vector searches a sorted vector of n arbitrary type data objects, which are stored in the
elements of an array at intervals of length stride. vec must have previously been sorted into the
specified order.

The function searches for the first or last match depending on the value of final. It returns TRUE
if an exact match is found and match is set to point at that object. If there is no exact match then
FALSE is returned and match is set to point to either the next later element, if final is equal to
Nag First, or the next earlier element, if final is Nag Last.

4. Parameters

key
Input: the object to search for.

vec[]
Input: the array of objects to be searched.

n
Input: the number n of objects to be searched.
Constraint: n ≥ 0.

stride
Input: the increment between data items in vec to be searched.

Note: if stride is positive, vec should point at the first data object; otherwise vec should point
at the last data object.

It should be noted that |stride| must be greater than or equal to size of (data objects), for
the search to be performed successfully. However, the code performs no check for violation
of this constraint.
Constraint: |stride| > 0.

compare
User-supplied function: this function compares two data objects. If its arguments are pointers
to a structure, this function must allow for the offset of the data field in the structure (if it
is not the first).
The function must return:

−1 if the first data field is less than the second,
0 if the first data field is equal to the second,
1 if the first data field is greater than the second.

order
Input: specifies whether the array will be sorted into ascending or descending order.
Constraint: order = Nag Ascending or Nag Descending.

[NP3275/5/pdf] 3.m01fsc.1

nag search vector NAG C Library Manual

final
Input: specifies whether to search for the first or last match. This also determines the pointer
returned if an exact match cannot be found.
Constraint: final = Nag First or Nag Last.

match
Output: if an exact match is found this is a pointer to a pointer to the matching data object.
If an exact match is not found this is set to point to the nearest object. If final is Nag First
this is the next later element, otherwise the next earlier element.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 0: n = 〈value〉.

NE INT ARG GT
On entry, n must not be greater than 〈value〉: n = 〈value〉.
On entry, |stride| must not be greater than 〈value〉: stride = 〈value〉.

These parameters are limited to an implementation-dependent size which is printed in the
error message.

NE INT ARG EQ
On entry, stride must not be equal to 0: stride = 〈value〉.

NE BAD PARAM
On entry, parameter order had an illegal value.
On entry, parameter final had an illegal value.

6. Further Comments

The maximum time taken by the function is approximately proportional to log2 n.

7. See Also

nag quicksort (m01csc)
nag rank sort (m01dsc)
nag reorder vector (m01esc)
nag make indices (m01zac)

8. Example

The example program reads a key and a list of real numbers, which have been sorted into ascending
order. It then searches the list for the first number which matches the key.

8.1. Program Text

/* nag_search_vector(m01fsc) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 2 revised, 1992.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_stddef.h>
#include <nagm01.h>

#ifdef NAG_PROTO
static Integer compare(const Pointer a,const Pointer b)

3.m01fsc.2 [NP3275/5/pdf]

m01 – Sorting m01fsc

#else
static Integer compare(a,b)
Pointer a, b;

#endif
{
double x = *((double *)a);
double y = *((double *)b);
return (x<y ? -1 : (x==y ? 0 : 1));

}

main()
{
double key, vec[50];
size_t i, n;
Pointer match;

/* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf("m01fsc Example Program Results\n");
/* Read number of points and number to search for */
Vscanf("%d%lf", &n, &key);
if (n>=0)

{
for (i=0; i<n; ++i)
Vscanf("%lf",&vec[i]);

if (m01fsc((Pointer) &key, (Pointer) vec, n, (ptrdiff_t)(sizeof(double)),
compare, Nag_Ascending, Nag_First, &match, NAGERR_DEFAULT))

{
Vprintf("Exact match found: ");
Vprintf("First match index: %d\n", (double *) match-vec);

}
else
{
Vprintf("No exact match found: ");
if (match!=NULL)
Vprintf("Nag_First nearest match index = %d\n", (double *) match-vec

else
Vprintf("No match in the input array\n");

}
exit(EXIT_SUCCESS);

}
else

{
Vfprintf(stderr, "Data error: program terminated\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

m01fsc Example Program Data
20
2.3
0.5 0.5 1.1 1.2 1.2 1.2 1.3 2.1 2.3 2.3
2.3 2.3 4.1 5.8 5.9 6.3 6.5 6.5 8.6 9.9

8.3. Program Results

m01fsc Example Program Results
Exact match found: First match index: 8

[NP3275/5/pdf] 3.m01fsc.3

